

NORMANHURST BOYS HIGH SCHOOL

MATHEMATICS ADVANCED (INCORPORATING EXTENSION 1) YEAR 11 COURSE

(A) (x1) Coordinate Geometry

Name:

Initial version by H. Lam, April 2016. Last updated March 27, 2021. Various corrections by students & members of the Mathematics Department at Normanhurst Boys High School.

Syllabus outcomes addressed

Symbols used	MA11-1 uses algebraic and graphical techniques to solve, and where appropriate, compare alternative solutions
Beware! Heed warning.	to problems
2 Review	MA11-2 uses the concepts of functions and relations to model analyse and solve practical problems
Provided on NESA Reference Sheet.	model, analyse and solve practical problems
(A) Mathematics Advanced content.	ME11-1 uses algebraic and graphical concepts in the modelling and solving of problems involving functions and their inverses
(\mathbf{x}_1) Mathematics Extension 1 content.	
Literacy: note new word/phrase.	ME11-2 manipulates algebraic expressions and graphical functions to solve problems
$\mathbf{\widehat{V}}$ Understanding (as opposed to memorisation) required!	
${\mathbb N}$ the set of natural numbers	Syllabus subtopics
\mathbb{Z} the set of integers	MA-F1 Working with Functions
\mathbb{Q} the set of rational numbers	
\mathbb{R} the set of real numbers	MA-F2 Graphing Techniques
\forall for all	ME-F1 Further Work with Functions

Gentle reminder

- For a thorough understanding of the topic, *every* question in this handout is to be completed!
- Additional questions from *Cambridge Year 11 3 Unit* will be completed at the discretion of your teacher.
- Remember to copy the question into your exercise book!

Contents

1	Points and intervals 1.1 Review of formulae	5 5										
2	Gradient 2.1 Review of formulae	7 7										
3	Equation of straight line 3.1 Review of formulae											
4	General coordinate geometry	14										
A	 (2) Perpendicular distance from a point to a line A.1 Results and formulae	16 16 18										
в	(2) Line through the intersection of other lines	23										
С	② RegionsC.1 Simple regionsC.2 Compound regions	27 27 30										
D	Legacy HSC questions D.1 1995 HSC	32 32										
	D.2 1996 HSC	33 33 34										
	D.3 1999 HSC	36 37 37										
	D.9 2003 HSC	$38 \\ 39 \\ 39 \\ 40$										
	D.13 2007 HSC	41 41 42										
	D.17 2011 HSC	42 43 44										

D.19 2013 HSC				•						•			•								44
$\mathrm{D.20}\;2014\;\mathrm{HSC}$																					45
$D.21\ 2015\ HSC$																					46
$\mathrm{D.22}\;2016\;\mathrm{HSC}$				•																	47
$\mathrm{D.23}\ \mathrm{2017}\ \mathrm{HSC}$				•																	48

Section 1

Points and intervals

1.1 Review of formulae

Laws/Results

C The distance formula to calculate the distance between two points (x_1, y_1) and (x_2, y_2) :

 $d = \dots$

Derivation of formula:

A Laws/Results

2 ? The midpoint formula to calculate the midpoint between two points (x_1, y_1) and (x_2, y_2) :

5

$$M(x, y) =$$

Derivation of formula:

- Q3-10
- Q16-17

Section 2

Gradient

Learning Goal(s)									
■ Knowledge The relation between parallel and perpendicular lines	Skills Determine quadrilateral he gradient liagonals	the by of its	type examir sides	of ning and	Vun The gradie inclin	lerstand relatio ent and ation	ing n be l the	tween angle	the e of
By the end of this section am I ab 5.3 Calculate the gradient of an int	le to: erval								
5.4 Examine and use the relations positive x -axis, and the gradien	hip between t m of that li	the ang ne or ta	cle of in ingent,	nclination and est	on of a ablish t	line or hat tan		t witl	h the
5.5 Understand and use the fact that m_1 and m_2 respectively are per	t parallel lines pendicular if	s have t and on	he same ly if m_1	e gradie $m_2 = -$	nt and t -1	hat two	lines w	ith gra	dient
5.6 Test for the special quadrilate calculations	rals in the C	Cartesia	n plane	using	distanc	e, midp	oint a	nd gra	dient
Review of formulae		÷					·····		

Laws/Results

C The gradient formula to calculate the gradient between two points (x_1, y_1) and (x_2, y_2) :

 $m = \dots$

Derivation of formula:

Laws/Results

The angle of inclination θ of the line and the positive direction of the x axis:

 $m = \dots$

7

Derivation of formula:

Example 4 [Ex 5B Q18]

- (a) A(1,4), B(5,0) and C(9,8) form the vertices of a triangle. Find the coordinates of P and Q if they divide the sides AB and AC respectively in the ratio 1:3.
- (b) Show that PQ is parallel to BC and is one quarter of its length.

a		D 1 1			
(ARADIENT	<u> </u>	REVIEW	OF	FOR	MULAI

The points A, B and C have coordinates (1,0), (0,8) and (7,4), and the angle between AC and the x axis is θ .

Find the gradient of the line AC and hence determine θ to the nearest degree.	2
Find the equation of AC .	2
Find the coordinates of D , the midpoint of AC .	2
Show that $AC \perp BD$.	1
What type of triangle is <i>ABC</i> ? Show full reasoning.	2
Find the area of this triangle.	2
Write down the coordinates of the point E such that $ABCE$ is a rhombus.	2
	<u>i</u> i

Section 3

Equation of straight line

5.10Determine if three distinct lines are concurrent

5.11Find the equations of straight lines, including parallel and perpendicular lines, given sufficient information

11

V Understanding

equation

Applying the appropriate form

of a straight line to find its

Review of formulae 3.1

A Laws/Results

C The gradient-intercept form of the equation of a line:

where

A Laws/Results

C The general form of the equation of a line:

Laws/Results

C The **point-gradient formula** to find the equation of a straight line through (x_1, y_1) with a given gradient m:

Derivation of formula:

Important note

No new theory is in this section. However, expect slightly more difficult problems within textbook exercises.

Example 6

[**Ex 5D Q6**] Given the points A(1, -2) and B(-3, 4), find in general form the equation of:

- (a) the line AB,
- (b) the line through A perpendicular to AB.

[Ex 5D Q12]

Example 7

- (a) On a number plane, plot the points A(4,3), B(0,-3) and C(4,0).
- (b) Find the equation of BC.
- (c) Explain why *OABC* is a parallelogram.
- (d) Find the area of OABC and the length of the diagonal AB.

Section 4

General coordinate geometry

Learning Goal(s)

Knowledge

The applications of the distance, midpoint and gradient formulas in geometry

Constant Skills

Solve problems in the Cartesian plane

V Understanding

The appropriate formulas and techniques to apply in solving geometric problems in the Cartesian plane

By the end of this section am I able to:

5.12 Solve a range of geometric problems using coordinate geometry concepts, including problems using pronumerals (rather than specific numeric values)

¹/₃**≡** Further exercises

② Ex 6G ● Q1-9

(x1) Ex 5G • Q1-14

Legacy 2 Unit course content obsolete from Year 11 2019

Section A

(2) Perpendicular distance from a point to a line

Important note

From the legacy Mathematics 2 Unit course. Provided for interest, and also so that some of the legacy HSC examination questions can be attempted.

A.1 **Results and formulae**

• The shortest distance from a point to a line (or any object) is the distance.

Laws/Results

The **perpendicular distance formula** to calculate the distance from a point (x_1, y_1) to the line ax + by + c = 0:

 $d_{\perp} =$

Derivation of formula – Calculate the perpendicular distance from the origin to a line ax + by + c = 0, then shift origin to another point (x_1, y_1) along with the line.

18(2) Perpendic	ULAR DISTANC	E FROM A PO	INT TO À LINE	- Circles	, CHORDS, TANGI	ENTS AND PERPE	NDICULAR DIST	ANCE
🤝 Е	kample 8							
Find the pe	rpendicula	r distance	of $P(-25$) from u	-2r - 1	Angu	10m 9 /5	
r ma the pe	трепатсита	ii distance	011(-2,0)	y nom y	-2x - 1.	Allsw	/er: 2\/ 3	
,,								
		· · · · · · · · · · · · · · · · · · ·						
A.2 Circles	s, chords	, tangen	its and p	erpenc	licular dist	ance		
Theo	orem 1							
The tange	nt to a cir	rcle is per	pendicula	ar to th	e radius dra	wn to the p	oint of	
contact.								
····· · · · · · · · · · · · · · · · ·		·····	dere dere dere der		e de construcción de constru		terreterreterret	
_ 🐟 Law	s/Results				•		· · · · · · · · · · · · · · · · · · ·	
A line will	s/Results							
A line will	s/Results	the	circle		if it is a		or	
A line will	s/Results	the	circle		if it is a		or	
A line will	s/Results	the circle	circle		if it is a	f contact if	or	
A line will	s/Results	the the circle	circle	at	if it is a the point o	f contact if	or it is a	
A line will	s/Results	the the circle	circle	at	if it is a the point o	f contact if	or it is a	
A line will	s/Results	the circle	circle \dots	at to the	if it is a the point o	f contact if of the c	or it is a circle is	
A line will greater	s/Results	the circle	circle	at to the	if it is a the point o	f contact if of the c	or it is a circle is	
A line will	s/Results	the circle	circle	to the	if it is a the point o	f contact if of the c	or it is a circle is	
A line will A line will Greater	s/Results	the circle	circle	to the	if it is a the point o	f contact if of the c	or it is a :ircle is	
A line will A line will Graw situation	s/Results the r than the ons presen	the circle the circle circle ent	circle	to the	if it is a the point o	f contact if of the c	or it is a bircle is	
A line will A line will Graw Greate	s/Results	the circle circle ent	circle irely if d_{\perp} three case	to the s.	if it is a the point o	f contact if of the c	or it is a :ircle is	
A line will A line will Graw Greate	s/Results	the circle the circle circle ent	circle	to the s.	if it is a the point o	f contact if of the c	or it is a circle is	
A line will A line will Graw Greater	s/Results	the circle the circle circle ent	circle \dots irely if d_{\perp} three case	to the	if it is a the point o	f contact if of the c	or it is a ircle is	
A line will A line will Graw greate	s/Results	the circle circle ent	circle irely if d_{\perp} three case	to the s.	if it is a the point o	f contact if of the c	or it is a circle is	
A line will A line will Graw Situation	s/Results	the circle the circle circle ent	circle	to the s.	if it is a the point o	f contact if of the c	or it is a pircle is	
A line will A line will Graw Grate	s/Results	the circle circle ent	circle irely if d_{\perp} three case	to the s.	if it is a the point o	f contact if	or it is a circle is	
A line will A line will Graw Greater	s/Results	the circle the circle circle ent	circle irely if d_{\perp} three case	to the s.	if it is a the point o	f contact if	or it is a pircle is	
A line will A line will Graw Grate	s/Results	the circle circle ent	circle	to the s.	if it is a the point o	f contact if	or it is a circle is	
A line will A line will Graw Greater	s/Results	the circle the circle circle ent	circle	to the s.	if it is a the point o	f contact if	or it is a pircle is	
A line will A line will Graw Greater	s/Results	the circle circle ent	circle	to the s	if it is a the point o	f contact if	or it is a :ircle is	
A line will A line will Graw Greater	s/Results	the circle	circle \dots irely if d_{\perp} three case	to the s	if it is a the point o	f contact if	or it is a pircle is	
A line will A line will Graw Greater A situati	s/Results	the circle circle ent	circle	to the	if it is a the point o	f contact if of the c	or it is a :ircle is 	

Section B

(2) Line through the intersection of other lines

Important note

From the legacy Mathematics 2 Unit course.

It is provided here for interest, and also so that some of the legacy HSC examination questions can be attempted. Most of the past HSC questions will no longer be relevant in the new calculus course HSC (first HSC examination in 2020).

Laws/Results

'k' method If $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ intersect at $M(x_0, y_0)$, then every other line that passes through $M(x_0, y_0)$ will have the form

for various values of k.

Example 13

(a) Write down the equation of a line through the intersection M of the lines

$$\begin{cases} \ell_1 : x + 2y - 6 = 0\\ \ell_2 : 3x - 2y - 6 = 0 \end{cases}$$

iii.

iv.

(b) Hence without finding the point of intersection, find the line through M that

- i. passes through P(2, -1).
- ii. has a gradient of 5

is vertical

is horizontal

Answer: i. 5x - 2y - 12 = 0 ii. 10x - 2y - 27 = 0 iii. $y = \frac{3}{2}$ iv. x = 3

26					2	Line ti	HROUGH THE I	NTERSECTION OF	OTHER LINES -	
			1 1 4							
	[Ex 5	F Q7								
	(a)	Write $x - 2$	e down the $2y + 5 = 0$ and	general fo d $x + y + y$	$\begin{array}{l} \text{rm of a} \\ 2 = 0. \end{array}$	line Show	through th that the g	ne intersection radient of this	M of line is	
		$\frac{1+k}{2-k}$	$\frac{1}{2}$	a w i g i		SHOW				
	(b)	Henc	e find the equ	ation of th	e lines th	rough	<i>M</i> :			
		i.	parallel to 3:	x + 4y = 5		iii.	perpendic	ular to $5y - 2x$	c = 4	
		ii.	perpendicula	ar to $2x - 3$	By = 6	iv.	parallel to	y - y - 7 = 0		
•••••										
•	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			•••••••••••••••••••••••••••••••••••••••			
				· · · · · · · · · · · · · · · · · · ·						
· · · · · · ·				· · · · · · · · · · · · · · · · · · ·						
					· · · · · · · · · · · · · · · · · · ·					
										· · · · · · · · · · · · · · · · · · ·
	1	: Furt	her exercises					•••••••••••••••••••••••••••••••••••••••		
	2 E	x 6F			(xi) Ex	5 F			
	•	Q2-9				• Q1	13			
								NORMANHURST BO	YS' HIGH SCHOO	L

Section C

2 Regions

C.1 Simple regions

A Laws/Results

A region in the number plane is formed whenever a graph is drawn.

Example 15

- (a) Sketch the line y = 3x + 4.
- (b) Shade in the region where y > 3x + 4.

Important note

- A Check boundary!
- **A** This is *not* a number line!

NORMANHURST BOYS' HIGH SCHOOL

29

C.2 Compound regions

30

Definition 1

The union of two regions A and B is the region covered by either A or B.

Definition 2

The *intersection* of two regions A and B is the common region covered by A and B.

Example 20

Graph the region represented by

Section D

Legacy HSC questions

D.1 1995 HSC

Question 2

The line ℓ cuts the x axis at L(-4,0) and the y axis at M(0,3) as shown. N is a point on the line ℓ , and P is the point (0,8).

(a)	Find the equation of the line l .	2
(b)	Show that the point $(16, 15)$ lies on the line ℓ .	1
(c)	By considering the lengths of ML and MP , show that $\triangle LMP$ is isosceles.	2
(d)	Calculate the gradient of the line PL .	1
(e)	M is the midpoint of the interval LN . Find the coordinates of the point N .	2
(f)	Show that $\angle NPL$ is a right angle.	2
(g)	Find the equation of the circle that passes through the points N , P , and L .	2

D.2 1996 HSC

Question 2

The line ℓ is shown in the diagram. it has equation x + 2y + 8 = 0 and cuts the x axis at A.

The line k has equation $y = -\frac{1}{2}x + 6$, and is not shown on the diagram.

Copy or trace the diagram into your Writing Booklet.

D.3	1997 HSC	
(h)	$Q(4,-6)$ lies on ℓ . Show that Q is the point on ℓ which is closest to P.	2
(g)	Find the perpendicular distance from P to ℓ .	2
(f)	Show that $P(8,2)$ lies on k.	1
(e)	Write down a pair of inequalities which define the region between k and l .	2
(d)	Shade the region $x + 2y + 8 \le 0$ on your diagram.	1
(c)	Draw the graph of k on your diagram, indicating where it cuts the axes.	2
(b)	Explain why k is parallel to ℓ .	1
(a)	Find the coordinates of A .	1

Question 3

(b)	Let 2	A and B be the points $(0, 1)$ and $(2, 3)$ respectively.	6
	i.	Find the coordinates of the midpoint of AB .	
	ii.	Find the slope of the line AB .	
	iii.	Find the equation of the perpendicular bisector of AB .	
	iv.	The point P lies on the line $y = 2x - 9$ and is equidistant from A and B. Find the coordinates of P.	

D.4 1998 HSC

Question 3

The diagram shows points A(1,0), B(4,1) and C(-1,6) in the Cartesian plane. $\angle ABC$ is θ .

Copy or trace the diagram into your Writing Booklet.

(a)	Show that A and C lie on the line $3x + y = 3$.	2
(b)	Show that the gradient of AB is $\frac{1}{3}$.	1
(c)	Show that the length of AB is $\sqrt{10}$ units.	1
(d)	Show that AB and AC are perpendicular.	1
(e)	Find $\tan \theta$.	2
(f)	Find the equation of the circle with centre A that passes through B .	2
(g)	The point D is not shown on the diagram. The point D lies on the line $3x + y = 3$ between A and C, and $AD = AB$. Find the coordinates of D.	2
(h)	On your diagram, shade the region satisfying the inequality $3x + y \leq 3$.	1

D.5 1999 HSC

Question 2

(b) The diagram shows the points A(-2,0), B(3,5) and the point C which lies on the x axis. The point D also lies on the x axis such that BD is perpendicular to AC.

- i. Show that the gradient of AB is 1.
- ii. Find the equation of the line AB.
- iii. What is the size of $\angle BAC$?
- iv. The length of BC is 13 units. Find the length of DC.
- v. Calculate the area of $\triangle ABC$.
- vi. Calculate the size of $\angle ABC$, correct to the nearest degree.

D.6 2000 HSC

Question 2

The diagram shows the points P(0,2) and Q(4,0). The point M is the midpoint of PQ. The line MN is perpendicular to PQ and meets the x axis at G and the y axis at N.

(a)	Show that the gradient of PQ is $-\frac{1}{2}$.	1
(b)	Find the coordinates of M .	2
(c)	Find the equation of the line MN .	2
(d)	Show that N has coordinates $(0, -3)$.	1
(e)	Find the distance NQ .	1
(f)	Find the equation of the circle with centre N and radius NQ .	2
(g)	Hence show that the circle in part (f) passes through the point P .	1
(h)	The point R lies in the first quadrant, and $PNQR$ is a rhombus. Find the coordinates of R .	2

D.7 2001 HSC

Question 2

(b) The diagram shows the points A(-2,5), B(4,3) and O(0,0). The point C is the fourth vertex of the parallelogram OABC.

i. Show that the equation of AB is x + 3y - 13 = 0.

- ii. Show that the length AB is $2\sqrt{10}$.
- iii. Calculate the perpendicular distance from O to the line AB.
- iv. Calculate the area of parallelogram OABC.
- v. Find the perpendicular distance from O to the line BC.

D.8 2002 HSC

Question 3

(c) The diagram shows two points A(2,2) and B(1,5) on the number plane.

Copy the diagram into your writing booklet.

- i. Find the coordinates of M, the midpoint of AB.
- ii. Show that the equation of the perpendicular bisector of AB is

$$x - 3y + 9 = 0$$

 $\mathbf{2}$

1

 $\mathbf{2}$

2

 $\mathbf{2}$

1

 $\mathbf{2}$

 $\mathbf{2}$

1

1

1

 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{2}$

- iii. Find the coordinates of the point C that lies on the y axis and is equidistant from A and B.
- iv. The point D lies on the intersection of the line y = 5 and the perpendicular bisector x 3y + 9 = 0. Find the coordinates of D, and mark the position of D on your diagram in your writing booklet.
- v. Find the area of $\triangle ABD$.

D.9 2003 HSC

Question 2

(b) In the diagram, OABC is a trapezium with $OA \parallel CB$. The coordinates of O, A and B are (0,0), (-1,1) and (4,6) respectively.

- v. Show that the perpendicular distance from O to the line BC is $5\sqrt{2}$.
- vi. Hence, or otherwise, calculate the area of the trapezium OABC.

D.10 2004 HSC

Question 2

(a) The diagram shows the points A(-1,3) and B(2,0). The line ℓ is drawn perpendicular to the x axis through the point B.

- i. Calculate the length of the interval AB.
 - Find the gradient of the line AB.
- iii. What is the size of the acute angle between the line AB and the line ℓ ? 1
- iv. Show that the equation of the line AB is x + y 2 = 0.
- v. Copy the diagram into your writing booklet and shade the region 1 defined by $x + y 2 \le 0$.
- vi. Write down the equation of the line ℓ .
- vii. The point C is on the line ℓ such that AC is perpendicular to AB. Find the coordinates of C. **2**

D.11 2005 HSC

ii.

Question 3

(c) In the diagram, A, B and C are the points (6,0), (9,0) and (12,6) respectively. The equation of the line OC is x - 2y = 0. The point D on OC is chosen so that AD is parallel to BC. The point E on BC is chosen so that DE is parallel to the x axis.

1

1

1

1

 $\mathbf{2}$

2

1

- iv. Prove that $\triangle OAD \parallel \mid \triangle DEC$.
- v. Hence, or otherwise, find the ratio of the lengths AD and EC.

f 2

D.12 2006 HSC

Question 3

(a) In the diagram, A, B and C are the points (1,4), (5,-4) and (-3,-1) respectively. The line AB meets the y axis at D.

i.	Show that the equation of the line AB is $2x + y - 6 = 0$.	2
ii.	Find the coordinates of the point D .	1
iii.	Find the perpendicular distance of the point C from the line AB .	1
iv.	Hence, or otherwise, find the area of the triangle ADC .	2

D.13 2007 HSC

Question 3

(a) In the diagram, A, B and C are the points (10,5), (12,16) and (2,11) respectively.

Copy or trace this diagram into your writing booklet.

i. Find the distance AC.1ii. Find the midpoint of AC.1iii. Show that $OB \perp AC$.2iv. Find the midpoint of OB and hence explain why OABC is a rhombus.2v. Hence, or otherwise, find the area of OABC.1

D.14 2008 HSC

Question 3

(a) In the diagram, ABCD is a quadrilateral. The equation of the line AD is 2x - y - 1 = 0.

- i. Show that ABCD is a trapezium by **2** showing that BC is parallel to AD.
- ii. The line CD is parallel to the x axis. **1** Find the coordinates of D.
- iii. Find the length of BC. 1
- iv. Show that the perpendicular distance **2** from *B* to *AD* is $\frac{4}{\sqrt{5}}$.
- v. Hence, or otherwise, find the area of the 2 trapezium *ABCD*.

41

D.15 2009 HSC

Question 3

(b) The circle in the diagram has centre N. The line LM is tangent to the circle at P.

i.	. Find the equation of LM in the form $ax + by + c = 0$.	
ii.	Find the distance NP .	2
iii.	Find the equation of the circle.	1
Shad	the region in the plane defined by $y \ge 0$ and $y \le 4 - x^2$.	2

D.16 2010 HSC

Question 3

(c)

(a) In the diagram A, B and C are the points (-2, -4), (12, 6) and (6, 8) respectively. The point N(2, 2) is the midpoint of AC. The point M is the midpoint of AB.

i.	Find the coordinates of M .	1
ii.	Find the gradient of BC .	1
iii.	Prove that $\triangle ABC$ is similar to $\triangle AMN$.	2
iv.	Find the equation MN .	2
v.	Find the exact length of BC .	1
vi.	Given that the area of $\triangle ABC$ is 44 square units, find the perpendicular distance from A to BC .	1

D.17 2011 HSC

Question 3

(c) The diagram shows a line ℓ_1 , with equation 3x + 4y - 12 = 0, which intersects the y axis at B.

A second line ℓ_2 , with equation 4x - 3y = 0, passes through the origin O and intersects ℓ_1 at E.

- i. Show that the coordinates of B are (0,3).
- ii. Show that ℓ_1 is perpendicular to ℓ_2 .
- iii. Show that the perpendicular distance from O to ℓ_1 is $\frac{12}{5}$. 1
- iv. Using Pythagoras' theorem, or otherwise, find the length of the interval 1 BE.
- v. Hence, or otherwise, find the area of $\triangle BOE$.

1

 $\mathbf{2}$

1

2012 HSC D.18

Question 13

The diagram shows a triangle ABC. The line 2x + y = 8 meets the x and y (a)axes at the points A and B respectively. The point C has coordinates (7, 4).

i.	Calculate the distance AB .	2
ii.	It is known that $AC = 5$ and $BC = \sqrt{65}$. (Do NOT prove this.)	2
	Calculate the size of $\angle ABC$ to the nearest degree.	
iii.	The point N lies on AB such that CN is perpendicular to AB .	3

The point N lies on AB such that CN is perpendicular to AB. iii.

Find the coordinates of N.

2013 HSC D.19

2. The diagram shows the line ℓ .

What is the slope of line ℓ ?

 $\mathbf{1}$

Question 12

(b) The points A(-2, -1), B(-2, 24), C(22, 42) and D(22, 17) form a parallelogram as shown. The point E(18, 39) lies on BC. The point F is the midpoint of AD.

- i. Show that the equation of the line through A and D is 3x 4y + 2 = 0. 2
- ii. Show that the perpendicular distance from B to the line through A and D is 20 units.
- iii. Find the length of EC.
- iv. Find the area of the trapezium EFDC.

D.20 2014 HSC

Question 12

(b) The points A(0,4), B(3,0) and C(6,1) form a triangle, as shown in the diagram.

- i. Show that the equation of AC is x + 2y 8 = 0. 2
- ii. Find the perpendicular distance from B to AC.
- iii. Hence, or otherwise, find the area of $\triangle ABC$.

1

 $\mathbf{2}$

 $\mathbf{2}$

D.21 2015 HSC

Question 12

(b) The diagram shows the rhombus *OABC*.

The diagonal from the point A(7, 11) to the point C lies on the line ℓ_1 .

The other diagonal, from the origin O to the point B, lies on the line ℓ_2 which has equation $y = -\frac{x}{3}$.

i. Show that the equation of the line ℓ_1 is y = 3x - 10.

22

ii. The lines ℓ_1 and ℓ_2 intersect at the point D.

Find the coordinates of D.

D.22 2016 HSC

Question 12

(a) The diagram shows points A(1,0), B(2,4) and C(6,1). The point D lies on BC such that $AD \perp BC$.

ii. Find the length of AD.

iii. Hence or otherwise, find the area of $\triangle ABC$.

 $\mathbf{2}$

 $\mathbf{2}$

D.23 2017 HSC

4. The region enclosed by y = 4 - x, y = x and y = 2x + 1 is shaded in the diagram.

Question 12

(c) The points A(-4, 0) and B(1, 5) lie on the line y = x + 4.

The length of AB is $\sqrt{2}$.

The points C(0, -2) and D(3, 1) lie on the line x - y - 2 = 0.

The points A, B, D, C form a trapezium as shown.

- i. Find the perpendicular distance from the point A(-4,0) to the line x y 2 = 0.
- ii. Calculate the area of the trapezium.

 $\mathbf{2}$

1

1

NESA Reference Sheet – calculus based courses

Trigonometric Functions

 $\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$ $A = \frac{1}{2}ab\sin C$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\frac{\sqrt{2}}{45^{\circ}}$ $C^{2} = a^{2} + b^{2} - 2ab\cos C$ $\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$ $l = r\theta$ $A = \frac{1}{2}r^{2}\theta$ $\frac{60^{\circ}}{1}$

Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \ \cos A \neq 0$$
$$\csc A = \frac{1}{\sin A}, \ \sin A \neq 0$$
$$\cot A = \frac{\cos A}{\sin A}, \ \sin A \neq 0$$
$$\cos^2 x + \sin^2 x = 1$$

Compound angles

 $\sin(A + B) = \sin A \cos B + \cos A \sin B$ $\cos(A + B) = \cos A \cos B - \sin A \sin B$ $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ If $t = \tan \frac{A}{2}$ then $\sin A = \frac{2t}{1 + t^2}$ $\cos A = \frac{1 - t^2}{1 + t^2}$ $\tan A = \frac{2t}{1 - t^2}$ $\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$ $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ $\sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)]$ $\cos A \sin B = \frac{1}{2} [\sin(A + B) - \sin(A - B)]$ $\sin^2 nx = \frac{1}{2} (1 - \cos 2nx)$ $\cos^2 nx = \frac{1}{2} (1 + \cos 2nx)$

Statistical Analysis

- approximately 68% of scores have z-scores between -1 and 1
- approximately 95% of scores have z-scores between -2 and 2
- approximately 99.7% of scores have z-scores between -3 and 3

$$E(X) = \mu$$

 $\sqrt{3}$

$$Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$$

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le x) = \int_{a}^{x} f(x) dx$$
$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X = r) = {^nC_r}p^r(1-p)^{n-r}$$

$$X \sim Bin(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {n \choose x}p^x(1-p)^{n-x}, x = 0, 1, \dots, n$$

$$E(X) = np$$

$$Var(X) = np(1-p)$$

- 2 -

Differential Calculus		Integral Calculus	
Function	Derivative	$\int f'(x) [f(x)]^n dx = \frac{1}{1} [f(x)]^{n+1} + c$	
$y = f(x)^n$	$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$	$\int f(x)[f(x)] dx = \frac{1}{n+1}[f(x)] + c$ where $n \neq -1$	
y = uv	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	$\int f'(x)\sin f(x)dx = -\cos f(x) + c$	
y = g(u) where $u = f(x)$	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	$\int f'(x)\cos f(x)dx = \sin f(x) + c$	
$y = \frac{u}{v}$	$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$	
$y = \sin f(x)$	$\frac{dy}{dx} = f'(x)\cos f(x)$	$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$	
$y = \cos f(x)$	$\frac{dy}{dx} = -f'(x)\sin f(x)$	$\int f'(x) = \frac{1}{2} \int f'(x) dx$	
$y = \tan f(x)$	$\frac{dy}{dx} = f'(x)\sec^2 f(x)$	$\int \frac{f(x)}{f(x)} dx = \ln f(x) + c$	
$y = e^{f(x)}$	$\frac{dy}{dx} = f'(x)e^{f(x)}$	$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$	
$y = \ln f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$	$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$	
$y = a^{f(x)}$	$\frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$	$\int \frac{f'(x)}{dx - \frac{1}{2} \tan^{-1} f(x)} dx = \frac{1}{2} \tan^{-1} \frac{f(x)}{dx} + c$	
$y = \log_a f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$	$\int a^2 + [f(x)]^2 a^{a} a^{a} a^{a} a^{a} a^{a}$	
$y = \sin^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - \left[f(x)\right]^2}}$	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$	
$y = \cos^{-1} f(x)$	$\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$	$\int_{a}^{b} f(x) dx$	
$y = \tan^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$	$\approx \frac{b-a}{2n} \left\{ f(a) + f(b) + 2 \left\lfloor f(x_1) + \dots + f(x_{n-1}) \right\rfloor \right\}$ where $a = x_0$ and $b = x_n$	
- 3 -			

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + \binom{n}{1}x^{n-1}a + \dots + \binom{n}{r}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{split} \left| \begin{array}{c} \underline{u} \right| &= \left| \begin{array}{c} x\underline{i} + y\underline{j} \right| = \sqrt{x^2 + y^2} \\ \\ \underline{u} \cdot \underline{v} &= \left| \begin{array}{c} \underline{u} \right| \right| \underline{v} \left| \cos \theta = x_1 x_2 + y_1 y_2 \right|, \\ \\ \\ \text{where } \begin{array}{c} \underline{u} &= x_1 \underline{i} + y_1 \underline{j} \\ \\ \\ \\ \text{and } \begin{array}{c} \underline{v} &= x_2 \underline{i} + y_2 \underline{j} \end{array} \end{split}$$

 $r_{\tilde{u}} = a + \lambda b_{\tilde{u}}$

Complex Numbers

 $z = a + ib = r(\cos\theta + i\sin\theta)$ $= re^{i\theta}$ $\left[r(\cos\theta + i\sin\theta)\right]^n = r^n(\cos n\theta + i\sin n\theta)$ $= r^n e^{in\theta}$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$
$$x = a\cos(nt + \alpha) + c$$
$$x = a\sin(nt + \alpha) + c$$
$$\ddot{x} = -n^2(x - c)$$

© 2018 NSW Education Standards Authority